Introduction¶
kernelmethods
is a pure python library defining modular classes that provides basic kernel methods, such as computing various kernel functions on a given sample (N points of dimension p) as well as provides an intuitive interface for advanced functionality such as composite and hyper kernels. This library fills an important void in the ever-growing python-based machine learning ecosystem, where users can only use predefined kernels and are not able to customize or extend them for their own applications, that demand great flexibility owing to their diversity and need for better performing kernel. This library defines the KernelMatrix
class that is central to all the kernel methods and machines. As the KernelMatrix
class is a key bridge between input data and the various kernel learning algorithms, it is designed to be highly usable and extensible to different applications and data types. Besides being able to apply basic kernels on a given sample (to produce a KernelMatrix
), this library provides various kernel operations, such as normalization, centering, product, alignment evaluation, linear combination and ranking (by various performance metrics) of kernel matrices.
In addition, we provide several convenient classes, such as KernelSet
and KernelBucket
for easy management of a large collection of kernels. Dealing with a diverse configuration of kernels is necessary for automatic kernel selection and optimization in applications such as Multiple Kernel Learning (MKL) and the like.
In addition to the common numerical kernels such as the Gaussian and Polynomial kernels, we designed this library to make it easy to develop categorical, string and graph kernels, with the same attractive properties of intuitive and highly-testable API. In addition to providing native implementation of non-numerical kernels, we aim to provide a deeply and easily extensible framework for arbitrary input data types, such as sequences, trees and graphs etc, via data structures such as pyradigm
.
Moreover, drop-in Estimator
classes are provided for kernel machines such as the SVM
for seamless usage in the scikit-learn
ecosystem.
Demo notebooks¶
A notebook that could be explored right away without any installation is available on mybinder here (click on the launch button):
For download:
Contributors welcome¶
The software is open source and in the beta stage. All types of contributions are greatly welcome.