Source code for kernelmethods.config

from operator import add, mul
import numpy as np

[docs]class KernelMethodsException(Exception): """ Generic exception to indicate invalid use of the ``kernelmethods`` library. Allows to distinguish improper use of KernelMatrix from other code exceptions """ pass
[docs]class KMAccessError(KernelMethodsException): """Exception to indicate invalid access to the kernel matrix elements!""" pass
[docs]class KMNormError(KernelMethodsException): """Custom exception to indicate error during normalization of kernel matrix""" pass
[docs]class KMSetAdditionError(KernelMethodsException): """Exception to indicate invalid addition of kernel matrix to a KernelSet""" pass
class KernelMethodsWarning(Warning): """Custom warning to indicate kernelmethods-specific warning!""" pass class Chi2NegativeValuesException(KernelMethodsException): """Custom exception to indicate Chi^2 kernel requires non-negative values""" pass VALID_KERNEL_MATRIX_OPS = ('sum', 'product', 'average') OPER_KM_OPS = {'sum' : add, 'product': mul} # default values and ranges kernel_bucket_strategies = ('exhaustive', 'light') # strategy: exhaustive default_degree_values_poly_kernel = (2, 3, 4) default_sigma_values_gaussian_kernel = tuple([2**exp for exp in range(-5, 6, 2)]) default_gamma_values_laplacian_kernel = tuple([2**exp for exp in range(1, 7, 2)]) # light light_degree_values_poly_kernel = (2, 3, ) light_sigma_values_gaussian_kernel = tuple([2**exp for exp in range(-3, 3, 2)]) light_gamma_values_laplacian_kernel = tuple([2**exp for exp in range(1, 3, 2)]) # ranking VALID_RANKING_METHODS = ("align/corr", "cv_risk") # controls the precision for kernel_matrix elements km_dtype = np.dtype('f8') # categorical variables dtype_categorical = np.unicode_